• Users Online: 193
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2015  |  Volume : 27  |  Issue : 4  |  Page : 133-138

Sevelamer hydrochloride and coronary artery calcification in chronic hemodialysis patients: a new mechanism of action

1 Department of Nephrology, Kasr Al-Aini School of Medicine, Cairo University, Cairo, Egypt
2 Department of Medical Biochemistry, Kasr Al-Aini School of Medicine, Cairo University, Cairo, Egypt
3 Department of Radiology, Kasr Al-Aini School of Medicine, Cairo University, Cairo, Egypt

Correspondence Address:
Bahaa Eldin Zayed
MD, Department of Nephrology, Kasr Al-Aini School of Medicine, Cairo University, 11451 Cairo
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1110-7782.174928

Rights and Permissions

Background The non-calcium-based phosphate binder sevelamer hydrochloride was developed to provide chronic kidney disease patients with a polymer capable of managing hyperphosphatemia without an increase in the calcium load. These beneficial effects were postulated as the mechanism of decreased progression of vascular calcification observed with such compounds. Our objective was to investigate the effect of low-dose sevelamer hydrochloride against calcium carbonate as phosphate binders on the coronary artery calcification score (CCS) and the fibroblast growth factor 23 (FGF23) level in patients receiving regular hemodialysis for more than 1 year, in a trial to find out a novel mechanism for the decreased vascular calcification observed during sevelamer use. Patients and methods A total of 80 hemodialysis patients were allocated into two groups each of 40 patients. The first group received sevelamer hydrochloride 2400 mg/day (group 1), whereas the second continued on calcium carbonate 1500 mg/day (group 2). For each patient, coronary artery calcification was estimated twice, once before admission to the study and again at the end of the study period using noncontrast computed tomography. Serum calcium, phosphorus, intact parathyroid hormone (PTH), lipids, and FGF23 were also assessed in these two situations. Results Beside the significant decrease in serum calcium and phosphorus levels after the use of sevelamer for 6 months, there was a significant decrease in levels of FGF23 and the rate of CCS progress in group 1. Serum levels of total and low-density lipoprotein cholesterol decreased significantly in group 1. The serum PTH level did not show a significant change in either group. CCS showed a significant positive correlation with FGF23, but there was no significant correlation with serum calcium, serum phosphorus, or serum PTH in both groups. Conclusion Sevelamer hydrochloride suppressed the progression of coronary artery calcification, and decreased the FGF23 level significantly. The significant correlation between the serum FGF23 level and the CCS in the absence of any significant correlation between the latter on the one hand and the serum calcium, the serum phosphorus, or the serum PTH on the other might highlight a novel mechanism of action of sevelamer on the CCS.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded1606    
    Comments [Add]    
    Cited by others 1    

Recommend this journal